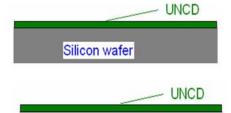
Biocompatibility of Ultrananocrystalline Diamond (UNCD) Thin Films

Bing Shi¹, Orlando Auciello¹, Qiaoling Jin², Liaohai Chen²

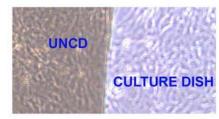

¹Materials Science Division, ²Biosciences Division, Argonne National Laboratory

Motivation

Need alternative implantable materials with appropriate mechanical, physical, chemical properties, as well as biocompatibility

Major Accomplishments

Development of UNCD thin films



UNCD film is grown on Si substrate. The Si substrates were etched to prepare free-standing UNCD film

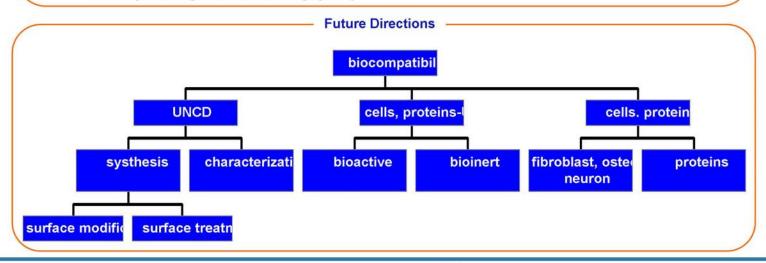
Cross section SEM image of the UNCD film

Cell culture on UNCD film

Mouse Embryonic Fibroblast (MEF) cells were cultured 36 hours in incubator. The cells growth on UNCD reached the same confluency as the culture dish.

Impact

High social impact on biosensors and implantable medical devices



Possible applications as artificial joints artificial biological and mechanical heart valves (www.biomet.com/patients/bestimplant.html, www.mayoclinic.org/marfan-rst/valvesurgery.html)

- Artificial implants such as hip and knee implants have benefited millions of people. However, the service time is only 8-10 years and a patient can have only two total joint implant replacements.
- UNCD coated artificial implants will have long service time.
- As the 3D scaffold for cell growth, the cellseeded UNCD will replace the traditional artificial ioints.

